Towards a Theory of Architectural Contracts:
Schemes and Patterns
of
Assumption/Promise Based System Specification

Manfred Broy

Technische Universitat Miinchen el Tl
Institut fur Informatik g % Zﬁ i |
D-85748 Garching, Germany -

Contracts

Contracts support following software engineering principles

* Modularity

¢ Modular refinement
* Interface abstraction
* State encapsulation
* Information hiding
* Divide and conquer
* Design patterns

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tm |

Assumption/Promise: Basic Idea

Specification pattern, to formulate a contract:

* If the environment fulfils assumptions, then the system
promises (guarantees, is committed to) properties

* This reflects the idea of a contract between

¢ the developer of the system

¢ the architect that selects the environment for the system
* Contracts include notions of compatibility

¢ Under which conditions can a sub-system be replaced by another
one with compatible behaviour

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy TUT | 3

Composition

o S |25 E
E®S

Yy xX(O Hiding internal channels

ExS

Visibility of internal channels

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tm | 4

A/P-Pattern

* Let System be the set of all systems.

* Composiing system S € System with environment E € Env(S)
System results in

EXS € System

* Based on composition operator x we formulate contracts by
assumptions and promises:
Con(S) = V E € Env(S): Asu(E) = Pro(ExS)
where
¢ Con(S) is a system specification called contract,
¢ Asu(E) is an environment specification called assumption and
¢ Pro(EXS) is a specification about the system EXS called a promise.

* The predicates specify properties
Con, Asu, Pro: System — 1B

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

Contracts Specifying Functional Properties

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

Semantics of Assumption/Promise: Interface Assertions

Given a syntactic interface (I»QO) an interface assertion

IS a Boolean expression p(x, y) where p Is a predic ate

[[
Pp: 1 x O >IB .

r r
and x € | andy € O are input and output histories

N

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

Semantics of Contracts by Logical Implication

* Interface assertions structured into following pattern:
assumption: asu(x, y)
promise: pro(X, y)
with the meaning: if the environment fulfils the assumption
asu(x, y)
then the system fulfils the promise
pro(x, y)
* We require of environment E the assumption specified by
Asu(E) = [V X, y: X € E(y) = asu(X, y)]
and of the system S and its environment E the promise is specified by
Pro(E, S)=[V X, y: Yy € (EXS)(X) = pro(X, y)]
The combination of these predicates then specifies a contract
Con(S) = [V E: Asu(E) = Pro(E, S)]
This defines the meaning of a functional contract.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy TUT | 8

Deriving Implicative Assertions from Contracts

* We consider the predicates
Asu(E) = [V X, y: x € E(y) = asu(X, Y)]

Pro(E, S) =[V X, y: ¥ € (EXS)(X) = pro(X,)]
* The combination of these predicates specifies a contract
Con(S) = [V E: Asu(E) = Pro(E, S)]
which unfolds into
Con(S) =
[V E: [V X, V: X e E(Yy) = asu(x, y)] =

[V X, y:y € (EXS)(X) = pro(x, y)]]
* The restriction of causality and realizability for

environment E and S allows us to derive further
properties.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

Causality and Realizability

* In case assertion asu(x, y) is causal and fully realizable there exists a
most general environment E_., such the following property holds :

V X, Yi X € Egen(y) < asu(x, y)
* If a most general environment exists, then

Con(S) = [V X, Y Y € (EgenXS)(X) = pro(x, y)]

This semantic interpretation of the A/P pattern is equivalent to
Con(S)=[V X, V:yeS(X)AXEe Egen(y) = pro(x, y)]
which leads by the specification of E ., to the following contract:

Con(S) =V x, y: asu(x, y) = (y € S(x) = pro(x, y))
and to interface assertion con(x, y) for contract Con(S)
con(x, y) = [asu(x, y) = pro(X, Y)]

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 10

Assumptions have to Speak about Output

* Consider a system with input channel x and output
channel y which numbers as messages specified by

asu(x, y) =V t: v n € IN: n#(x4t) < (n#ydt)+1
pro(x, Y) = V n € IN: n#x = n#y

* We get the specification in terms of an interface assertion
con(x, y) = [asu(x, y) = pro(X, y)]

* The promise is only guaranteed if a next copy of a

number n is never sent to the system before the copy
previously sent has been forwareded.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 11

Implicative interface assertions

Tab. 1 Cases of Validity of con(x, y), asu(x, y), and pro(X, y)

con(x,y) | asu(x,y) | pro(x,y) Inte rpretation

true true true for sysem S history y is a correct output for
valid input history x

false true false for sysem S history y is not a correct output for
valid input history x

true false true for sysem S and history y input history x is not
a valid input

true false false for sysem S and history y input history x is not
a valid input

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 12

Architectural Contracts

* Given an A/P specification
assumption: asu(x, y)
promise: pro(X, y)

one interpretation is that the system S is only used in
environments E where assumption asu(x, y) holds.

Then we get

asu(x, y) A pro(x, y)
This interpretation is called architectural contract.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

13

Implicative Assertions

* A derived interpretation is an implicative assertion

con(x, y) = [asu(X, y) = pro(X, y)]
that specifies the properties implied for system S by the
A/P specification.

* If system S is only used in environments E with specifying
assertion env(x, y) we get by composition for the
composite system ExS

env(X, y) A (asu(x, y) = pro(x, y))
which is different to the architectural contract
interpretation.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 14

Example: General Implicative Assertions

* Let n be a given natural number.

* Consider a system with input channel x and output
channel y, both carrying natural numbers as messages
with specification

con(x, y) = [n#y = 0 = n#x = 0]
* The premise is not a meaningful assumption, since
O F\h;;e_dges not exist an environment that guarantees assertion
¢ it does not speak about input x but only about output v.
* Assertion n#y = 0 is not causal in history vy, since
yit = ylt = V x: (n#y = 0) = (n#y’ = 0)
which does not hold.

* Assertion n#y = 0 is not a healthy assumption, since it is
not realizable by any environment.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 15

Example: Implicative Assertions (ctd)

* Assertion
con'(x, y) = [n#x > 0 = n#y > 0]
iS equivalent to assertion con(x, y) by contraposition
* Assertion n#x > 0 is causal in history y since the formula
vyt = ylt = vx: (n#x34t > 0) = (n#x4t > 0)
holds.
* This assertion may be interpreted as an A/P-format
assumption: n#x > 0
promise: n#y >0
which is a meaningful (but rather simple) contract.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

16

Healthiness Conditions for Contracts

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

17

Useless Contracts

* There are two cases of contracts Con(S) that are not very
useful:

Con(S) = true
and
Con(S) = false

* In the first case we speak of a trivial specification in the
second case of a paradoxical specification.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 18

Non-satisfiable Specifications

* We call assumption Asu(E) about environment E non-
satisfiable if there does not exist some environment E
such that Asu(E) holds.

Then contract Con(S) is trivial.
* Let Asu be specified based on asu as defined above.
e If asu(x, y) is false, then Asu is non-satisfiable.

* Even in cases where asu(x, y) is not identical to false,
predicate Asu may be non-satisfiable.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

19

Non-satisfiable Specifications

Theorem:

* If every environment E can be represented by a total
Mealy machine, then Asu(E) is satisfiable if and only if
asu(x, y) is realizable (for the environment with input y
and output x).

* Proof:
For a specification asu(x, y) there exists a Mealy machine
that satisfies asu(x, y) if and only if asu(x, y) is realizable.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 20

Safety and Liveness of Interface Assertions

Technische Universitat Miinchen S Il
Institut fir Informatik E{ﬂ
D-85748 Garching, Germany X

Safety

* A predicate R is a pure safety property if the following
equivalence holds for all histories x and v:

R(X, y) = V t: R(x4t, ylt)

* Since always the following condition holds
(V t: R(x4t, yit)) < R(X, y)

* R is a safety property iff for all histories x and y):
(V t: R(x4t, yit)) = R(X, y)

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

22

Liveness

* Ris a pure liveness property if
V t: R(xdt, yilt)

* The only predicate that is both a pure safety and a pure
liveness predicate is the predicate true.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

23

Decomposing Assertions into Safety and Liveness

* The safety part R* of an interface assertion R(X, y) is
given by the following equation

R*(x, y) = V t: R(xdt, yit)
* Ris called safety realizable if:
VvV x: 3y: R¥X, y)
* For predicate R we get liveness property R* included in
property R by
R*(X, y) = (=R*(X, ¥) v R(X, ¥))

* To show that R*® is a liveness property we have to prove
V t: R®(xdt, yit)

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

Assumption/Promises as Safety and Liveness Properties

* We consider the interface assertion con(x, y) with
con(x, y) = [asu(x, y) = pro(x, y)]

* The liveness conditions in assertion asu(x, y) for input
history x may depend on safety properties of y.

* A typical example would be

O If y(t) is a query, then there exists a time t' > t such that x(t') is a
reply to this query.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 25

Assumption asu and promise pro as safety property

* In this case the A/P-scheme is equivalent to the following
assertion:
con(x, y) = V t: [asu(x4t, yit) = pro(xit, yit)]
This is the consequence of the required causality of
con(x, y).

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 26

Assumption asu as safety, promise pro as liveness property

° In this case the A/P-specification con(x, y) IS
equivalent to the following assertion:

con(x,y)=[V t asu(xit, yit)] = pro(x, y)

This Is the consequence of the required causality
of con(x, y).

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 27

Assumption asu as liveness, promise pro as safety property:

* In this case we can strengthen the specification according

to realizability on con(x, y)
con(x, y) = pro(x, y)

* Since the violation of assumption asu(x, y) cannot be
observed In finite time, but promise pro can only be
violated In finite time, a computation strategy has to
observe promise pro in any case.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 28

An example

asu(x, y) = (true#x = «)
pro(Xx, y) = (true#y = 0)
Assume a realization f that
fulfils true#f(x) > 0 for some x with true#x = n < IN.
This leads to a contradiction since by
true#f(x) > 0 there exists some t with
true#f(x)\t > 0 and thus for history x’ with
x4t = xVt and true#x’ > «
we get true#f(x’) > 0 which violates the specification
true#x = o = true#f(x) =0

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 29

Assumption asu and promise pro as liveness properties

* In this case the condition
asu(x, y) = pro(x, y)
can be fulfilled by fulfilling promise pro(x, y) in any case.
* Otherwise, the liveness condition have to fit together.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

30

An example

asu(x, y) = (true#x = «)
pro(X, y) = (true#y < «)

Contracts, Marktoberdorf Summer School, August 2010

Manfred Broy

Tm |

31

Decomposing A/P Specification Into Safety and Liveness

* We decompose assumption asu and promise pro into pure
safety properties asu, pros and pure liveness properties
asu, and pro, such that

con(x, y) =
[aSUS(X, Y) A aSUL(X, Y) — prOS(XI Y) A prOL(XI Y)]

* For a strongly causal and realizable specification con(x, y)
we can derive specific assertions

asus(x, y) = prog(X, y)
asug(X, Y) A asu (X, y) = proy(x, y)

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 32

Conclusion

* Analysing the assumption/promise pattern additional
consequences are derived by
¢ Causality and realizability requirements
¢ Safety and liveness considerations

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tm |

33

