
Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Towards a Theory of Architectural Contracts:

Schemes and Patterns

of

Assumption/Promise Based System Specification

Manfred Broy

Manfred Broy 2Contracts, Marktoberdorf Summer School, August 2010

Contracts

Contracts support following software engineering principles

• Modularity

◊ Modular refinement

• Interface abstraction

• State encapsulation

• Information hiding

• Divide and conquer

• Design patterns

Manfred Broy 3Contracts, Marktoberdorf Summer School, August 2010

Assumption/Promise: Basic Idea

Specification pattern, to formulate a contract:

• If the environment fulfils assumptions, then the system
promises (guarantees, is committed to) properties

• This reflects the idea of a contract between

◊ the developer of the system

◊ the architect that selects the environment for the system

• Contracts include notions of compatibility

◊ Under which conditions can a sub-system be replaced by another
one with compatible behaviour

Manfred Broy 4Contracts, Marktoberdorf Summer School, August 2010

Composition

yŌ

xŌ y

x
S E

y

x

S E

E S
Hiding internal channels

E S
Visibility of internal channels

Manfred Broy 5Contracts, Marktoberdorf Summer School, August 2010

A/P-Pattern

• Let System be the set of all systems.

• Composiing system S System with environment E Env(S)
System results in

E S System

• Based on composition operator we formulate contracts by

assumptions and promises:

Con(S) E Env(S): Asu(E) Pro(E S)

where

◊ Con(S) is a system specification called contract,

◊ Asu(E) is an environment specification called assumption and

◊ Pro(E S) is a specification about the system E S called a promise.

• The predicates specify properties

Con, Asu, Pro: System IB

Manfred Broy 6Contracts, Marktoberdorf Summer School, August 2010

Contracts Specifying Functional Properties

Manfred Broy 7Contracts, Marktoberdorf Summer School, August 2010

Semantics of Assumption/Promise: Interface Assertions

Given a syntactic interface (IO) an interface assertion

is a Boolean expression p(x, y) where p is a predicate

 p:
r
I

r
O IB .

and x
r
I and y

r
O are input and output histories

Manfred Broy 8Contracts, Marktoberdorf Summer School, August 2010

Semantics of Contracts by Logical Implication

• Interface assertions structured into following pattern:

assumption: asu(x, y)

promise: pro(x, y)

with the meaning: if the environment fulfils the assumption

asu(x, y)

then the system fulfils the promise

pro(x, y)

• We require of environment E the assumption specified by

Asu(E) [x, y: x E(y) asu(x, y)]

and of the system S and its environment E the promise is specified by

Pro(E, S) [x, y: y (E S)(x) pro(x, y)]

The combination of these predicates then specifies a contract

Con(S) [E: Asu(E) Pro(E, S)]

This defines the meaning of a functional contract.

Manfred Broy 9Contracts, Marktoberdorf Summer School, August 2010

Deriving Implicative Assertions from Contracts

• We consider the predicates

Asu(E) [x, y: x E(y) asu(x, y)]

Pro(E, S) [x, y: y (E S)(x) pro(x, y)]

• The combination of these predicates specifies a contract

Con(S) [E: Asu(E) Pro(E, S)]

which unfolds into

Con(S)

[E: [x, y: x E(y) asu(x, y)]

[x, y: y (E S)(x) pro(x, y)]]

• The restriction of causality and realizability for
environment E and S allows us to derive further
properties.

Manfred Broy 10Contracts, Marktoberdorf Summer School, August 2010

Causality and Realizability

• In case assertion asu(x, y) is causal and fully realizable there exists a
most general environment Egen such the following property holds :

x, y: x Egen(y) asu(x, y)

• If a most general environment exists, then

Con(S) [x, y: y (Egen S)(x) pro(x, y)]

This semantic interpretation of the A/P pattern is equivalent to

Con(S) [x, y: y S(x) x Egen(y) pro(x, y)]

which leads by the specification of Egen to the following contract:

Con(S) x, y: asu(x, y) (y S(x) pro(x, y))

and to interface assertion con(x, y) for contract Con(S)

con(x, y) [asu(x, y) pro(x, y)]

Manfred Broy 11Contracts, Marktoberdorf Summer School, August 2010

Assumptions have to Speak about Output

• Consider a system with input channel x and output
channel y which numbers as messages specified by

asu(x, y) t: n IN: n#(x t) ≤ (n#y t)+1

pro(x, y) n IN: n#x = n#y

• We get the specification in terms of an interface assertion

con(x, y) [asu(x, y) pro(x, y)]

• The promise is only guaranteed if a next copy of a
number n is never sent to the system before the copy
previously sent has been forwareded.

Manfred Broy 12Contracts, Marktoberdorf Summer School, August 2010

Implicative interface assertions

con(x, y) asu(x, y) pro(x, y) Interpretation

true true true for system S history y is a correct output for
valid input history x

false true false for system S history y is not a correct output for
valid input history x

true false true for system S and history y input history x is not
a valid input

true false false for system S and history y input history x is not
a valid input

Tab. 1 Cases of Validity of con(x, y), asu(x, y), and pro(x, y)

Manfred Broy 13Contracts, Marktoberdorf Summer School, August 2010

Architectural Contracts

• Given an A/P specification

assumption: asu(x, y)

promise: pro(x, y)

one interpretation is that the system S is only used in
environments E where assumption asu(x, y) holds.

Then we get

asu(x, y) pro(x, y)

This interpretation is called architectural contract.

Manfred Broy 14Contracts, Marktoberdorf Summer School, August 2010

Implicative Assertions

• A derived interpretation is an implicative assertion

con(x, y) [asu(x, y) pro(x, y)]

that specifies the properties implied for system S by the
A/P specification.

• If system S is only used in environments E with specifying
assertion env(x, y) we get by composition for the

composite system E S

env(x, y) (asu(x, y) pro(x, y))

which is different to the architectural contract
interpretation.

Manfred Broy 15Contracts, Marktoberdorf Summer School, August 2010

Example: General Implicative Assertions

• Let n be a given natural number.

• Consider a system with input channel x and output
channel y, both carrying natural numbers as messages
with specification

con(x, y) [n#y = 0 n#x = 0]

• The premise is not a meaningful assumption, since
◊ there does not exist an environment that guarantees assertion

n#y = 0

◊ it does not speak about input x but only about output y.

• Assertion n#y = 0 is not causal in history y, since

y t = y’ t x: (n#y = 0) (n#y’ = 0)

which does not hold.

• Assertion n#y = 0 is not a healthy assumption, since it is
not realizable by any environment.

Manfred Broy 16Contracts, Marktoberdorf Summer School, August 2010

Example: Implicative Assertions (ctd)

• Assertion

con’(x, y) [n#x > 0 n#y > 0]

is equivalent to assertion con(x, y) by contraposition

• Assertion n#x > 0 is causal in history y since the formula

y t = y’ t x: (n#x t > 0) (n#x t > 0)

holds.

• This assertion may be interpreted as an A/P-format

assumption: n#x > 0

promise: n#y > 0

which is a meaningful (but rather simple) contract.

Manfred Broy 17Contracts, Marktoberdorf Summer School, August 2010

Healthiness Conditions for Contracts

Manfred Broy 18Contracts, Marktoberdorf Summer School, August 2010

Useless Contracts

• There are two cases of contracts Con(S) that are not very
useful:

Con(S) = true

and

Con(S) = false

• In the first case we speak of a trivial specification in the
second case of a paradoxical specification.

Manfred Broy 19Contracts, Marktoberdorf Summer School, August 2010

Non-satisfiable Specifications

• We call assumption Asu(E) about environment E non-
satisfiable if there does not exist some environment E
such that Asu(E) holds.

Then contract Con(S) is trivial.

• Let Asu be specified based on asu as defined above.

• If asu(x, y) is false, then Asu is non-satisfiable.

• Even in cases where asu(x, y) is not identical to false,
predicate Asu may be non-satisfiable.

Manfred Broy 20Contracts, Marktoberdorf Summer School, August 2010

Non-satisfiable Specifications

Theorem:

• If every environment E can be represented by a total
Mealy machine, then Asu(E) is satisfiable if and only if
asu(x, y) is realizable (for the environment with input y
and output x).

• Proof:
For a specification asu(x, y) there exists a Mealy machine
that satisfies asu(x, y) if and only if asu(x, y) is realizable.

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Safety and Liveness of Interface Assertions

Manfred Broy 22Contracts, Marktoberdorf Summer School, August 2010

Safety

• A predicate R is a pure safety property if the following
equivalence holds for all histories x and y:

R(x, y) t: R(x t, y t)

• Since always the following condition holds

(t: R(x t, y t)) R(x, y)

• R is a safety property iff for all histories x and y):

(t: R(x t, y t)) R(x, y)

Manfred Broy 23Contracts, Marktoberdorf Summer School, August 2010

Liveness

• R is a pure liveness property if

t: R(x t, y t)

• The only predicate that is both a pure safety and a pure
liveness predicate is the predicate true.

Manfred Broy 24Contracts, Marktoberdorf Summer School, August 2010

Decomposing Assertions into Safety and Liveness

• The safety part R* of an interface assertion R(x, y) is
given by the following equation

R*(x, y) t: R(x t, y t)

• R is called safety realizable if:

x: y: R*(x, y)

• For predicate R we get liveness property R∞ included in
property R by

R∞(x, y) (R*(x, y) R(x, y))

• To show that R∞ is a liveness property we have to prove
t: R∞(x t, y t)

Manfred Broy 25Contracts, Marktoberdorf Summer School, August 2010

Assumption/Promises as Safety and Liveness Properties

• We consider the interface assertion con(x, y) with

con(x, y) [asu(x, y) pro(x, y)]

• The liveness conditions in assertion asu(x, y) for input
history x may depend on safety properties of y.

• A typical example would be

◊ If y(t) is a query, then there exists a time t' > t such that x(t') is a
reply to this query.

Manfred Broy 26Contracts, Marktoberdorf Summer School, August 2010

Assumption asu and promise pro as safety property

• In this case the A/P-scheme is equivalent to the following
assertion:

con(x, y) t: [asu(x t, y t) pro(x t, y t)]

This is the consequence of the required causality of
con(x, y).

Manfred Broy 27Contracts, Marktoberdorf Summer School, August 2010

Assumption asu as safety, promise pro as liveness property

• In this case the A/P-specification con(x, y) is
equivalent to the following assertion:

con(x, y) [t: asu(x t, y t)] pro(x, y)

This is the consequence of the required causality
of con(x, y).

Manfred Broy 28Contracts, Marktoberdorf Summer School, August 2010

Assumption asu as liveness, promise pro as safety property:

• In this case we can strengthen the specification according
to realizability on con(x, y)

con(x, y) pro(x, y)

• Since the violation of assumption asu(x, y) cannot be
observed in finite time, but promise pro can only be
violated in finite time, a computation strategy has to
observe promise pro in any case.

Manfred Broy 29Contracts, Marktoberdorf Summer School, August 2010

An example

asu(x, y) (true#x =)

pro(x, y) (true#y = 0)

Assume a realization f that

fulfils true#f(x) > 0 for some x with true#x = n IN.

This leads to a contradiction since by

true#f(x) > 0 there exists some t with

true#f(x) t > 0 and thus for history x’ with

x t = x’ t and true#x’ >

we get true#f(x’) > 0 which violates the specification

true#x = true#f(x) = 0

Manfred Broy 30Contracts, Marktoberdorf Summer School, August 2010

Assumption asu and promise pro as liveness properties

• In this case the condition

asu(x, y) pro(x, y)

can be fulfilled by fulfilling promise pro(x, y) in any case.

• Otherwise, the liveness condition have to fit together.

Manfred Broy 31Contracts, Marktoberdorf Summer School, August 2010

An example

asu(x, y) (true#x =)

pro(x, y) (true#y <)

Manfred Broy 32Contracts, Marktoberdorf Summer School, August 2010

Decomposing A/P Specification Into Safety and Liveness

• We decompose assumption asu and promise pro into pure
safety properties asuS, proS and pure liveness properties
asuL and proL such that

con(x, y)

[asuS(x, y) asuL(x, y) proS(x, y) proL(x, y)]

• For a strongly causal and realizable specification con(x, y)
we can derive specific assertions

asuS(x, y) proS(x, y)

asuS(x, y) asuL(x, y) proL(x, y)

Manfred Broy 33Contracts, Marktoberdorf Summer School, August 2010

Conclusion

• Analysing the assumption/promise pattern additional
consequences are derived by

◊ Causality and realizability requirements

◊ Safety and liveness considerations

