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Contracts

Contracts support following software engineering principles

• Modularity

◊ Modular refinement

• Interface abstraction

• State encapsulation

• Information hiding

• Divide and conquer

• Design patterns
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Assumption/Promise: Basic Idea

Specification pattern, to formulate a contract:

• If the environment fulfils assumptions, then the system 
promises (guarantees, is committed to) properties 

• This reflects the idea of a contract between 

◊ the developer of the system

◊ the architect that selects the environment for the system

• Contracts include notions of compatibility

◊ Under which conditions can a sub-system be replaced by another 
one with compatible behaviour
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A/P-Pattern

• Let System be the set of all systems. 

• Composiing system S System with environment E Env(S) 
System results in

E S System

• Based on composition operator we formulate contracts by 

assumptions and promises:

Con(S) E Env(S): Asu(E) Pro(E S)

where 

◊ Con(S) is a system specification called contract, 

◊ Asu(E) is an environment specification called assumption and 

◊ Pro(E S) is a specification about the system E S called a promise. 

• The predicates specify properties

Con, Asu, Pro: System IB
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Contracts Specifying Functional Properties
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Semantics of Assumption/Promise: Interface Assertions

Given a syntactic interface (IO) an interface assertion  

is a Boolean expression p(x, y) where p is a predicate 

   p:   
r 
I       

r 
O  IB  .   

and x      
r 
I  and y      

r 
O  are input and output histories 
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Semantics of Contracts by Logical Implication 

• Interface assertions structured into following pattern:

assumption: asu(x, y)

promise: pro(x, y)

with the meaning: if the environment fulfils the assumption

asu(x, y)

then the system fulfils the promise

pro(x, y)

• We require of environment E the assumption specified by

Asu(E) [ x, y: x E(y) asu(x, y)]

and of the system S and its environment E the promise is specified by

Pro(E, S) [ x, y: y (E S)(x)  pro(x, y)]

The combination of these predicates then specifies a contract 

Con(S) [ E: Asu(E) Pro(E, S)]

This defines the meaning of a functional contract.
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Deriving Implicative Assertions from Contracts

• We consider the predicates

Asu(E) [ x, y: x E(y) asu(x, y)]

Pro(E, S) [ x, y: y (E S)(x)  pro(x, y)]

• The combination of these predicates specifies a contract 

Con(S) [ E: Asu(E) Pro(E, S)] 

which unfolds into

Con(S) 

[ E: [ x, y: x E(y) asu(x, y)] 

[ x, y: y (E S)(x)  pro(x, y)]] 

• The restriction of causality and realizability for 
environment E and S allows us to derive further 
properties. 
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Causality and Realizability

• In case assertion asu(x, y) is causal and fully realizable there exists a 
most general environment Egen such the following property holds :

x, y: x Egen(y) asu(x, y)

• If a most general environment exists, then  

Con(S) [ x, y: y (Egen S)(x)  pro(x, y)]

This semantic interpretation of the A/P pattern is equivalent to 

Con(S) [ x, y: y S(x) x Egen(y) pro(x, y)]

which leads by the specification of Egen to the following contract:

Con(S) x, y: asu(x, y) (y S(x) pro(x, y))

and to interface assertion con(x, y) for contract Con(S)

con(x, y) [asu(x, y) pro(x, y)]
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Assumptions have to Speak about Output

• Consider a system with input channel x and output 
channel y which numbers as messages specified by

asu(x, y) t: n IN: n#(x t) ≤ (n#y t)+1

pro(x, y) n IN: n#x = n#y

• We get the specification in terms of an interface assertion

con(x, y) [asu(x, y) pro(x, y)]

• The promise is only guaranteed if a next copy of a 
number n is never sent to the system before the copy 
previously sent has been forwareded.
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Implicative interface assertions

 

con(x, y)  asu(x, y) pro(x, y) Interpretation  

true true true for system S history y is a correct output for 
valid input history x 

false true false for system S history y is not a correct output for 
valid input history x 

true false true for system S and history y input history x is not 
a valid input 

true false false for system S and history y input history x is not 
a valid input  

 

 

Tab. 1 Cases of Validity of con(x, y), asu(x, y), and pro(x, y)
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Architectural Contracts

• Given an A/P specification

assumption: asu(x, y)

promise: pro(x, y)

one interpretation is that the system S is only used in 
environments E where assumption asu(x, y) holds. 

Then we get 

asu(x, y) pro(x, y)

This interpretation is called architectural contract.
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Implicative Assertions

• A derived interpretation is an implicative assertion 

con(x, y) [asu(x, y) pro(x, y)]

that specifies the properties implied for system S by the 
A/P specification. 

• If system S is only used in environments E with specifying 
assertion env(x, y) we get by composition for the 

composite system E S

env(x, y) (asu(x, y) pro(x, y))

which is different to the architectural contract 
interpretation. 
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Example: General Implicative Assertions

• Let n be a given natural number.

• Consider a system with input channel x and output 
channel y, both carrying natural numbers as messages 
with specification 

con(x, y) [n#y = 0 n#x = 0]

• The premise is not a meaningful assumption, since
◊ there does not exist an environment that guarantees assertion 

n#y = 0

◊ it does not speak about input x but only about output y. 

• Assertion n#y = 0 is not causal in history y, since

y t = y’ t x: (n#y = 0) (n#y’ = 0)

which does not hold. 

• Assertion n#y = 0 is not a healthy assumption, since it is 
not realizable by any environment.
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Example: Implicative Assertions (ctd)

• Assertion

con’(x, y) [n#x > 0 n#y > 0]

is equivalent to assertion con(x, y) by contraposition 

• Assertion n#x > 0 is causal in history y since the formula

y t = y’ t x: (n#x t > 0) (n#x t > 0)

holds. 

• This assertion may be interpreted as an A/P-format

assumption: n#x > 0

promise: n#y > 0

which is a meaningful (but rather simple) contract.
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Healthiness Conditions for Contracts
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Useless Contracts

• There are two cases of contracts Con(S) that are not very 
useful:

Con(S) = true

and 

Con(S) = false

• In the first case we speak of a trivial specification in the 
second case of a paradoxical specification.
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Non-satisfiable Specifications

• We call assumption Asu(E) about environment E non-
satisfiable if there does not exist some environment E
such that Asu(E) holds. 

Then contract Con(S) is trivial.

• Let Asu be specified based on asu as defined above. 

• If asu(x, y) is false, then Asu is non-satisfiable. 

• Even in cases where asu(x, y) is not identical to false, 
predicate Asu may be non-satisfiable.
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Non-satisfiable Specifications

Theorem:

• If every environment E can be represented by a total 
Mealy machine, then Asu(E) is satisfiable if and only if 
asu(x, y) is realizable (for the environment with input y
and output x).

• Proof: 
For a specification asu(x, y) there exists a Mealy machine 
that satisfies asu(x, y) if and only if asu(x, y) is realizable.
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Safety and Liveness of Interface Assertions
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Safety

• A predicate R is a pure safety property if the following 
equivalence holds for all histories x and y:

R(x, y) t: R(x t, y t)

• Since always the following condition holds

( t: R(x t, y t)) R(x, y)

• R is a safety property iff  for all histories x and y):

( t: R(x t, y t)) R(x, y)
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Liveness

• R is a pure liveness property if

t: R(x t, y t)

• The only predicate that is both a pure safety and a pure 
liveness predicate is the predicate true.
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Decomposing Assertions into Safety and Liveness

• The safety part R* of an interface assertion R(x, y) is 
given by the following equation

R*(x, y) t: R(x t, y t)

• R is called safety realizable if:

x: y: R*(x, y)

• For predicate R we get liveness property R∞ included in 
property R by

R∞(x, y) ( R*(x, y) R(x, y))

• To show that R∞ is a liveness property we have to prove 
t: R∞(x t, y t)
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Assumption/Promises as Safety and Liveness Properties

• We consider the interface assertion con(x, y) with

con(x, y) [asu(x, y) pro(x, y)]

• The liveness conditions in assertion asu(x, y) for input
history x may depend on safety properties of y.

• A typical example would be

◊ If y(t) is a query, then there exists a time t' > t such that x(t') is a
reply to this query.
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Assumption asu and promise pro as safety property 

• In this case the A/P-scheme is equivalent to the following 
assertion:

con(x, y) t: [asu(x t, y t) pro(x t, y t)]

This is the consequence of the required causality of 
con(x, y).
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Assumption asu as safety, promise pro as liveness property 

• In this case the A/P-specification con(x, y) is
equivalent to the following assertion:

con(x, y) [ t: asu(x t, y t)] pro(x, y)

This is the consequence of the required causality
of con(x, y).
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Assumption asu as liveness, promise pro as safety property:

• In this case we can strengthen the specification according
to realizability on con(x, y)

con(x, y) pro(x, y)

• Since the violation of assumption asu(x, y) cannot be
observed in finite time, but promise pro can only be
violated in finite time, a computation strategy has to
observe promise pro in any case.
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An example

asu(x, y) (true#x = )

pro(x, y) (true#y = 0)

Assume a realization f that 

fulfils true#f(x) > 0 for some x with true#x = n IN. 

This leads to a contradiction since by 

true#f(x) > 0 there exists some t with 

true#f(x) t > 0 and thus for history x’ with 

x t = x’ t and true#x’ > 

we get true#f(x’) > 0 which violates the specification

true#x = true#f(x) = 0
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Assumption asu and promise pro as liveness properties

• In this case the condition

asu(x, y) pro(x, y)

can be fulfilled by fulfilling promise pro(x, y) in any case.

• Otherwise, the liveness condition have to fit together.
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An example

asu(x, y) (true#x = )

pro(x, y) (true#y < )
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Decomposing A/P Specification Into Safety and Liveness

• We decompose assumption asu and promise pro into pure 
safety properties asuS, proS and pure liveness properties 
asuL and proL such that

con(x, y) 

[asuS(x, y) asuL(x, y) proS(x, y) proL(x, y)]

• For a strongly causal and realizable specification con(x, y)
we can derive specific assertions

asuS(x, y) proS(x, y)

asuS(x, y) asuL(x, y) proL(x, y)
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Conclusion

• Analysing the assumption/promise pattern additional 
consequences are derived by

◊ Causality and realizability requirements

◊ Safety and liveness considerations


